Показать сокращенную информацию
dc.contributor.author | Carvajal I. | |
dc.contributor.author | Martinez-Garcia E.A. | |
dc.contributor.author | Lavrenov R. | |
dc.contributor.author | Magid E. | |
dc.date.accessioned | 2022-02-09T20:46:10Z | |
dc.date.available | 2022-02-09T20:46:10Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/170154 | |
dc.description.abstract | This work describes a planning path-tracking control for a 6-axis robot manipulator in palettes assembly. Two biologically inspired approaches motivated this work: the general τ - Jerk theory for trajectory tracking and a recurrent bi-layer Hopfield artificial neural network. Equidistant Cartesian points generate free-collision paths between the robot and the palette. Nonlinear regression-based 3rd grade polynomials represents polynomial assembling trajectories. A variational method optimizes paths length. The method is validated through numeric simulations, showing feasibility and effectiveness. | |
dc.subject | assembling | |
dc.subject | by-layer-ANN | |
dc.subject | Hopfield-neurons | |
dc.subject | model-based-control | |
dc.subject | robotic-arm | |
dc.subject | tau-theory | |
dc.subject | vision | |
dc.title | Robot arm planning and control by τ-Jerk theory and vision-based recurrent ANN observer | |
dc.type | Conference Proceeding | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS-2021-SID85107671774 |