Показать сокращенную информацию
dc.contributor.author | Katanaev M.O. | |
dc.date.accessioned | 2022-02-09T20:45:39Z | |
dc.date.available | 2022-02-09T20:45:39Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/170094 | |
dc.description.abstract | Recently the ’t Hooft–Polyakov monopole solutions in Yang–Mills theory were given new physical interpretation in the geometric theory of defects describing the continuous distribution of dislocations and disclinations in elastic media. It means that the ’t Hooft–Polyakov monopole can be seen, probably, in solids. To this end we need to compute the corresponding spin distribution on lattice sites of crystals. The paper describes one of the possible spin distributions. The Bogomol’nyi– Prasad–Sommerfield solution is considered as an example. | |
dc.subject | Disclination | |
dc.subject | Geometric theory of defects | |
dc.subject | ’t Hooft–polyakov monopole | |
dc.title | Spin distribution for the ’t hooft–polyakov monopole in the geometric theory of defects | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 8 | |
dc.relation.ispartofseries-volume | 7 | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS-2021-7-8-SID85111414985 |