Показать сокращенную информацию
dc.contributor.author | Minakov A.A. | |
dc.contributor.author | Schick C. | |
dc.date.accessioned | 2022-02-09T20:44:26Z | |
dc.date.available | 2022-02-09T20:44:26Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/169948 | |
dc.description.abstract | An integro-differential equation describes the non-equilibrium thermal response of glass-forming substances with a dynamic (time-dependent) heat capacity to fast thermal perturbations. We found that this heat transfer problem could be solved analytically for a heat source with an arbitrary time dependence and different geometries. The method can be used to analyze the response to local thermal perturbations in glass-forming materials, as well as temperature fluctuations during subcritical crystal nucleation and decay. The results obtained can be useful for applications and a better understanding of the thermal properties of glass-forming materials, polymers, and nanocomposites. | |
dc.subject | Non-equilibrium heat transfer problem | |
dc.subject | Second-kind integro-differential equations | |
dc.subject | Time-dependent response function | |
dc.subject | Volterra integral equations | |
dc.title | Integro-differential equation for the non-equilibrium thermal response of glass-forming materials: Analytical solutions | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 13 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1 | |
dc.source.id | SCOPUS-2021-13-2-SID85100533651 |