Kazan Federal University Digital Repository

Discovery of novel chemical reactions by deep generative recurrent neural network

Show simple item record

dc.contributor.author Bort W.
dc.contributor.author Baskin I.I.
dc.contributor.author Gimadiev T.
dc.contributor.author Mukanov A.
dc.contributor.author Nugmanov R.
dc.contributor.author Sidorov P.
dc.contributor.author Marcou G.
dc.contributor.author Horvath D.
dc.contributor.author Klimchuk O.
dc.contributor.author Madzhidov T.
dc.contributor.author Varnek A.
dc.date.accessioned 2022-02-09T20:43:44Z
dc.date.available 2022-02-09T20:43:44Z
dc.date.issued 2021
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/169862
dc.description.abstract The “creativity” of Artificial Intelligence (AI) in terms of generating de novo molecular structures opened a novel paradigm in compound design, weaknesses (stability & feasibility issues of such structures) notwithstanding. Here we show that “creative” AI may be as successfully taught to enumerate novel chemical reactions that are stoichiometrically coherent. Furthermore, when coupled to reaction space cartography, de novo reaction design may be focused on the desired reaction class. A sequence-to-sequence autoencoder with bidirectional Long Short-Term Memory layers was trained on on-purpose developed “SMILES/CGR” strings, encoding reactions of the USPTO database. The autoencoder latent space was visualized on a generative topographic map. Novel latent space points were sampled around a map area populated by Suzuki reactions and decoded to corresponding reactions. These can be critically analyzed by the expert, cleaned of irrelevant functional groups and eventually experimentally attempted, herewith enlarging the synthetic purpose of popular synthetic pathways.
dc.title Discovery of novel chemical reactions by deep generative recurrent neural network
dc.type Article
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 11
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS-2021-11-1-SID85100512559


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics