Показать сокращенную информацию

dc.contributor.author Arslanov M.M.
dc.date.accessioned 2022-02-09T20:43:09Z
dc.date.available 2022-02-09T20:43:09Z
dc.date.issued 2021
dc.identifier.issn 1995-0802
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/169792
dc.description.abstract Abstract: Let $$\simeq$$ be a binary relation between sets of integers, and ≤R be a Post reducibility, i.e. a reflexive and transitive relation between sets of integers such that if A ≤R B then the computational complexity of recognition of elements of A is easier than (or equal to) the recognition of elements of B. Suppose that for a class A of arithmetical sets, which have an effective enumeration $$\{\Omega_{e}\}_{e\in\omega}$$, there are R-complete sets, i.e. such sets D that for any A ∈ A, A ≤R D. Earlier we considered completeness criteria for such reducibilities roughly of the following type: For any $$A\in{\mathcal{A}}$$, A is R-complete if and only if there is a function f, defined on ω such that f ≤R D and $$\Omega_{f(i)}\not\simeq\Omega_{i}$$ for all $$i\in\omega$$. This means that for any set A ∈ A, if it is non-complete, then any function $$f\leq_{R}A$$ has a fixed-point $$e$$: $$\Omega_{f(e)}\simeq\Omega_{e}$$. In this paper we introduce a notion of fixed-point selection function for sequences of such sets and study their complexity characteristics.
dc.relation.ispartofseries Lobachevskii Journal of Mathematics
dc.subject arithmetical hierarchy
dc.subject fixed-point free function
dc.subject Kolmogorov complexity
dc.subject precomplete numbering
dc.subject recursion theorem
dc.subject reducibility
dc.title Fixed-point Selection Functions
dc.type Article
dc.relation.ispartofseries-issue 4
dc.relation.ispartofseries-volume 42
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 685
dc.source.id SCOPUS19950802-2021-42-4-SID85108848646


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика