Kazan Federal University Digital Repository

QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach

Show simple item record

dc.contributor.author Zankov D.V.
dc.contributor.author Matveieva M.
dc.contributor.author Nikonenko A.V.
dc.contributor.author Nugmanov R.I.
dc.contributor.author Baskin I.I.
dc.contributor.author Varnek A.
dc.contributor.author Polishchuk P.
dc.contributor.author Madzhidov T.I.
dc.date.accessioned 2022-02-09T20:37:26Z
dc.date.available 2022-02-09T20:37:26Z
dc.date.issued 2021
dc.identifier.issn 1549-9596
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/169440
dc.description.abstract Modern QSAR approaches have wide practical applications in drug discovery for designing potentially bioactive molecules. If such models are based on the use of 2D descriptors, important information contained in the spatial structures of molecules is lost. The major problem in constructing models using 3D descriptors is the choice of a putative bioactive conformation, which affects the predictive performance. The multi-instance (MI) learning approach considering multiple conformations in model training could be a reasonable solution to the above problem. In this study, we implemented several multi-instance algorithms, both conventional and based on deep learning, and investigated their performance. We compared the performance of MI-QSAR models with those based on the classical single-instance QSAR (SI-QSAR) approach in which each molecule is encoded by either 2D descriptors computed for the corresponding molecular graph or 3D descriptors issued for a single lowest energy conformation. The calculations were carried out on 175 data sets extracted from the ChEMBL23 database. It is demonstrated that (i) MI-QSAR outperforms SI-QSAR in numerous cases and (ii) MI algorithms can automatically identify plausible bioactive conformations.
dc.relation.ispartofseries Journal of Chemical Information and Modeling
dc.title QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach
dc.type Article
dc.relation.ispartofseries-issue 10
dc.relation.ispartofseries-volume 61
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 4913
dc.source.id SCOPUS15499596-2021-61-10-SID85116592231


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics