Показать сокращенную информацию
dc.contributor.author | Bikchentaev A. | |
dc.date.accessioned | 2022-02-09T20:37:01Z | |
dc.date.available | 2022-02-09T20:37:01Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1385-1292 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/169391 | |
dc.description.abstract | Rickart C∗-algebras are unital and satisfy polar decomposition. We proved that if a unital C∗-algebra A satisfies polar decomposition and admits “good” faithful tracial states then A is a Rickart C∗-algebra. Via polar decomposition we characterized tracial states among all states on a Rickart C∗-algebra. We presented the triangle inequality for Hermitian elements and traces on Rickart C∗-algebra. For a block projection operator and a trace on a Rickart C∗-algebra we proved a new inequality. As a corollary, we obtain a sharp estimate for a trace of the commutator of any Hermitian element and a projection. Also we give a characterization of traces in a wide class of weights on a von Neumann algebra. | |
dc.relation.ispartofseries | Positivity | |
dc.subject | C -algebra ∗ | |
dc.subject | Hilbert space | |
dc.subject | Polar decomposition | |
dc.subject | trace | |
dc.subject | von Neumann algebra | |
dc.subject | Weight | |
dc.title | Trace inequalities for Rickart C<sup>∗</sup> -algebras | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 5 | |
dc.relation.ispartofseries-volume | 25 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1943 | |
dc.source.id | SCOPUS13851292-2021-25-5-SID85111130233 |