dc.contributor.author |
Bikchentaev A. |
|
dc.date.accessioned |
2022-02-09T20:37:01Z |
|
dc.date.available |
2022-02-09T20:37:01Z |
|
dc.date.issued |
2021 |
|
dc.identifier.issn |
1385-1292 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/169391 |
|
dc.description.abstract |
Rickart C∗-algebras are unital and satisfy polar decomposition. We proved that if a unital C∗-algebra A satisfies polar decomposition and admits “good” faithful tracial states then A is a Rickart C∗-algebra. Via polar decomposition we characterized tracial states among all states on a Rickart C∗-algebra. We presented the triangle inequality for Hermitian elements and traces on Rickart C∗-algebra. For a block projection operator and a trace on a Rickart C∗-algebra we proved a new inequality. As a corollary, we obtain a sharp estimate for a trace of the commutator of any Hermitian element and a projection. Also we give a characterization of traces in a wide class of weights on a von Neumann algebra. |
|
dc.relation.ispartofseries |
Positivity |
|
dc.subject |
C -algebra ∗ |
|
dc.subject |
Hilbert space |
|
dc.subject |
Polar decomposition |
|
dc.subject |
trace |
|
dc.subject |
von Neumann algebra |
|
dc.subject |
Weight |
|
dc.title |
Trace inequalities for Rickart C<sup>∗</sup> -algebras |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
5 |
|
dc.relation.ispartofseries-volume |
25 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1943 |
|
dc.source.id |
SCOPUS13851292-2021-25-5-SID85111130233 |
|