Kazan Federal University Digital Repository

Microbial metabolic response to winter warming stabilizes soil carbon

Show simple item record

dc.contributor.author Tian J.
dc.contributor.author Zong N.
dc.contributor.author Hartley I.P.
dc.contributor.author He N.
dc.contributor.author Zhang J.
dc.contributor.author Powlson D.
dc.contributor.author Zhou J.
dc.contributor.author Kuzyakov Y.
dc.contributor.author Zhang F.
dc.contributor.author Yu G.
dc.contributor.author Dungait J.A.J.
dc.date.accessioned 2022-02-09T20:36:54Z
dc.date.available 2022-02-09T20:36:54Z
dc.date.issued 2021
dc.identifier.issn 1354-1013
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/169376
dc.description.abstract Current consensus on global climate change predicts warming trends with more pronounced temperature changes in winter than summer in the Northern Hemisphere at high latitudes. Moderate increases in soil temperature are generally related to faster rates of soil organic carbon (SOC) decomposition in Northern ecosystems, but there is evidence that SOC stocks have remained remarkably stable or even increased on the Tibetan Plateau under these conditions. This intriguing observation points to altered soil microbial mediation of carbon-cycling feedbacks in this region that might be related to seasonal warming. This study investigated the unexplained SOC stabilization observed on the Tibetan Plateau by quantifying microbial responses to experimental seasonal warming in a typical alpine meadow. Ecosystem respiration was reduced by 17%–38% under winter warming compared with year-round warming or no warming and coincided with decreased abundances of fungi and functional genes that control labile and stable organic carbon decomposition. Compared with year-round warming, winter warming slowed macroaggregate turnover rates by 1.6 times, increased fine intra-aggregate particulate organic matter content by 75%, and increased carbon stabilized in microaggregates within stable macroaggregates by 56%. Larger bacterial “necromass” (amino sugars) concentrations in soil under winter warming coincided with a 12% increase in carboxyl-C. These results indicate the enhanced physical preservation of SOC under winter warming and emphasize the role of soil microorganisms in aggregate life cycles. In summary, the divergent responses of SOC persistence in soils exposed to winter warming compared to year-round warming are explained by the slowing of microbial decomposition but increasing physical protection of microbially derived organic compounds. Consequently, the soil microbial response to winter warming on the Tibetan Plateau may cause negative feedbacks to global climate change and should be considered in Earth system models.
dc.relation.ispartofseries Global Change Biology
dc.subject carbon degradation genes
dc.subject microbial anabolism
dc.subject microbial community
dc.subject SOC stabilization
dc.subject soil aggregate turnover
dc.subject winter warming
dc.title Microbial metabolic response to winter warming stabilizes soil carbon
dc.type Article
dc.relation.ispartofseries-issue 10
dc.relation.ispartofseries-volume 27
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 2011
dc.source.id SCOPUS13541013-2021-27-10-SID85100836282


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics