Показать сокращенную информацию
dc.contributor.author | Arslanov M.M. | |
dc.contributor.author | Batyrshin I.I. | |
dc.contributor.author | Yamaleev M.M. | |
dc.date.accessioned | 2022-02-09T20:35:50Z | |
dc.date.available | 2022-02-09T20:35:50Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/169293 | |
dc.description.abstract | We examine the relationship between the CEA hierarchy and the Ershov hierarchy within $\Delta_2^0$ Turing degrees. We study the long-standing problem raised in [1] about the existence of a low computably enumerable (c.e.) degree $\bf a$ for which the class of all non-c.e. $CEA(\bf a)$ degrees does not contain 2-c.e. degrees. We solve the problem by proving a stronger result: there exists a noncomputable low c.e. degree $\textbf{a}$ such that any $CEA(\bf a)$$\omega$-c.e. degree is c.e. Also we discuss related questions and possible generalizations of this result. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | computably enumerable set | |
dc.subject | low set | |
dc.subject | relative enumerability | |
dc.subject | the Ershov hierarchy | |
dc.title | CEA Operators and the Ershov Hierarchy | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 8 | |
dc.relation.ispartofseries-volume | 65 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 63 | |
dc.source.id | SCOPUS1066369X-2021-65-8-SID85114023633 |