dc.contributor.author |
Arslanov M.M. |
|
dc.contributor.author |
Batyrshin I.I. |
|
dc.contributor.author |
Yamaleev M.M. |
|
dc.date.accessioned |
2022-02-09T20:35:50Z |
|
dc.date.available |
2022-02-09T20:35:50Z |
|
dc.date.issued |
2021 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/169293 |
|
dc.description.abstract |
We examine the relationship between the CEA hierarchy and the Ershov hierarchy within $\Delta_2^0$ Turing degrees. We study the long-standing problem raised in [1] about the existence of a low computably enumerable (c.e.) degree $\bf a$ for which the class of all non-c.e. $CEA(\bf a)$ degrees does not contain 2-c.e. degrees. We solve the problem by proving a stronger result: there exists a noncomputable low c.e. degree $\textbf{a}$ such that any $CEA(\bf a)$$\omega$-c.e. degree is c.e. Also we discuss related questions and possible generalizations of this result. |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
computably enumerable set |
|
dc.subject |
low set |
|
dc.subject |
relative enumerability |
|
dc.subject |
the Ershov hierarchy |
|
dc.title |
CEA Operators and the Ershov Hierarchy |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
8 |
|
dc.relation.ispartofseries-volume |
65 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
63 |
|
dc.source.id |
SCOPUS1066369X-2021-65-8-SID85114023633 |
|