Показать сокращенную информацию
dc.contributor.author | Mokeychev V.S. | |
dc.date.accessioned | 2022-02-09T20:35:47Z | |
dc.date.available | 2022-02-09T20:35:47Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/169287 | |
dc.description.abstract | It is proved: if $\phi(\tau,\xi)$ is a scalar continuous real function of arguments $\tau\in [a_{(n-1)},\ b_{(n-1)}]\subset R^{n-1},$ $\xi \in [a,\ b]\subset R^{1}$ and $\phi(\tau,a)\phi(\tau,b)<0$ for all $\tau,$ then for all $\varepsilon >0$ there exists a continuous function $\phi_{0}(\tau,\xi)$ such that $|\phi(\tau,\xi)-\phi_{0}(\tau,\xi)|<\varepsilon,$ and the equation $\phi_{0}(\tau,\xi)=0$ has a solution continuously dependent on $\tau$.The assertion is applied to the proof of the solvability of a finite system of nonlinear equations, to the estimation of the number of solutions. We give illustrating examples. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | continuity of solution | |
dc.subject | equation | |
dc.subject | non uniqueness of solution | |
dc.subject | smallest solution | |
dc.title | The Solvability of a System of Nonlinear Equations | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 65 | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS1066369X-2021-65-1-SID85100949492 |