dc.contributor.author |
Mokeychev V.S. |
|
dc.date.accessioned |
2022-02-09T20:35:47Z |
|
dc.date.available |
2022-02-09T20:35:47Z |
|
dc.date.issued |
2021 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/169287 |
|
dc.description.abstract |
It is proved: if $\phi(\tau,\xi)$ is a scalar continuous real function of arguments $\tau\in [a_{(n-1)},\ b_{(n-1)}]\subset R^{n-1},$ $\xi \in [a,\ b]\subset R^{1}$ and $\phi(\tau,a)\phi(\tau,b)<0$ for all $\tau,$ then for all $\varepsilon >0$ there exists a continuous function $\phi_{0}(\tau,\xi)$ such that $|\phi(\tau,\xi)-\phi_{0}(\tau,\xi)|<\varepsilon,$ and the equation $\phi_{0}(\tau,\xi)=0$ has a solution continuously dependent on $\tau$.The assertion is applied to the proof of the solvability of a finite system of nonlinear equations, to the estimation of the number of solutions. We give illustrating examples. |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
continuity of solution |
|
dc.subject |
equation |
|
dc.subject |
non uniqueness of solution |
|
dc.subject |
smallest solution |
|
dc.title |
The Solvability of a System of Nonlinear Equations |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
1 |
|
dc.relation.ispartofseries-volume |
65 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.source.id |
SCOPUS1066369X-2021-65-1-SID85100949492 |
|