Kazan Federal University Digital Repository

The Solvability of a System of Nonlinear Equations

Show simple item record

dc.contributor.author Mokeychev V.S.
dc.date.accessioned 2022-02-09T20:35:47Z
dc.date.available 2022-02-09T20:35:47Z
dc.date.issued 2021
dc.identifier.issn 1066-369X
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/169287
dc.description.abstract It is proved: if $\phi(\tau,\xi)$ is a scalar continuous real function of arguments $\tau\in [a_{(n-1)},\ b_{(n-1)}]\subset R^{n-1},$ $\xi \in [a,\ b]\subset R^{1}$ and $\phi(\tau,a)\phi(\tau,b)<0$ for all $\tau,$ then for all $\varepsilon >0$ there exists a continuous function $\phi_{0}(\tau,\xi)$ such that $|\phi(\tau,\xi)-\phi_{0}(\tau,\xi)|<\varepsilon,$ and the equation $\phi_{0}(\tau,\xi)=0$ has a solution continuously dependent on $\tau$.The assertion is applied to the proof of the solvability of a finite system of nonlinear equations, to the estimation of the number of solutions. We give illustrating examples.
dc.relation.ispartofseries Russian Mathematics
dc.subject continuity of solution
dc.subject equation
dc.subject non uniqueness of solution
dc.subject smallest solution
dc.title The Solvability of a System of Nonlinear Equations
dc.type Article
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 65
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS1066369X-2021-65-1-SID85100949492


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics