Показать сокращенную информацию
dc.contributor.author | Aminova A.V. | |
dc.contributor.author | Khakimov D.R. | |
dc.date.accessioned | 2022-02-09T20:35:47Z | |
dc.date.available | 2022-02-09T20:35:47Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/169286 | |
dc.description.abstract | We study five-dimensional pseudo-Riemannian h-spaces $H_{221}$ of type $\{221\}$.Necessary and sufficient conditions are determined under which $H_{221}$ is aspace of constant (zero) curvature.Nonhomothetical projective motions in $H_{221}$ of nonconstant curvatureare found, homotheties and isometries of the indicated spaces are investigated.Dimensions, basis elements, and structure equations of maximal projective Liealgebras acting in $H_{221}$ of nonconstant curvature are determined.As a result, the classification of h-spaces $H_{221}$ of type $\{221\}$ by(non-homothetical) Lie algebras of infinitesimalprojective and affine transformations is obtained. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | five-dimensional pseudo-Riemannian manifold | |
dc.subject | h-space H of type 221 221 | |
dc.subject | nonhomothetical projective motion | |
dc.subject | projective Lie algebra | |
dc.title | Lie Algebras of Projective Motions of Five-Dimensional H-Spaces H<inf>221</inf> of Type {221} | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 12 | |
dc.relation.ispartofseries-volume | 65 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 6 | |
dc.source.id | SCOPUS1066369X-2021-65-12-SID85121671387 |