dc.contributor.author |
Aminova A.V. |
|
dc.contributor.author |
Khakimov D.R. |
|
dc.date.accessioned |
2022-02-09T20:35:47Z |
|
dc.date.available |
2022-02-09T20:35:47Z |
|
dc.date.issued |
2021 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/169286 |
|
dc.description.abstract |
We study five-dimensional pseudo-Riemannian h-spaces $H_{221}$ of type $\{221\}$.Necessary and sufficient conditions are determined under which $H_{221}$ is aspace of constant (zero) curvature.Nonhomothetical projective motions in $H_{221}$ of nonconstant curvatureare found, homotheties and isometries of the indicated spaces are investigated.Dimensions, basis elements, and structure equations of maximal projective Liealgebras acting in $H_{221}$ of nonconstant curvature are determined.As a result, the classification of h-spaces $H_{221}$ of type $\{221\}$ by(non-homothetical) Lie algebras of infinitesimalprojective and affine transformations is obtained. |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
five-dimensional pseudo-Riemannian manifold |
|
dc.subject |
h-space H of type 221 221 |
|
dc.subject |
nonhomothetical projective motion |
|
dc.subject |
projective Lie algebra |
|
dc.title |
Lie Algebras of Projective Motions of Five-Dimensional H-Spaces H<inf>221</inf> of Type {221} |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
12 |
|
dc.relation.ispartofseries-volume |
65 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
6 |
|
dc.source.id |
SCOPUS1066369X-2021-65-12-SID85121671387 |
|