Показать сокращенную информацию
dc.contributor.author | Madzhidov T.I. | |
dc.contributor.author | Rakhimbekova A. | |
dc.contributor.author | Afonina V.A. | |
dc.contributor.author | Gimadiev T.R. | |
dc.contributor.author | Mukhametgaleev R.N. | |
dc.contributor.author | Nugmanov R.I. | |
dc.contributor.author | Baskin I.I. | |
dc.contributor.author | Varnek A. | |
dc.date.accessioned | 2022-02-09T20:34:49Z | |
dc.date.available | 2022-02-09T20:34:49Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0959-9436 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/169164 | |
dc.description.abstract | The synthesis of the desired chemical compound is the main task of synthetic organic chemistry. The predictions of reaction conditions and some important quantitative characteristics of chemical reactions as yield and reaction rate can substantially help in the development of optimal synthetic routes and assessment of synthesis cost. Theoretical assessment of these parameters can be performed with the help of modern machine-learning approaches, which use available experimental data to develop predictive models called quantitative or qualitative structure–reactivity relationship (QSRR) modelling. In the article, we review the state-of-the-art in the QSRR area and give our opinion on emerging trends in this field. | |
dc.relation.ispartofseries | Mendeleev Communications | |
dc.subject | chemical reaction | |
dc.subject | chemoinformatics | |
dc.subject | QSAR | |
dc.subject | QSPR | |
dc.subject | QSRR | |
dc.subject | reaction conditions | |
dc.subject | reaction informatics | |
dc.subject | reaction rate | |
dc.subject | reaction yield | |
dc.title | Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow | |
dc.type | Review | |
dc.relation.ispartofseries-issue | 6 | |
dc.relation.ispartofseries-volume | 31 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 769 | |
dc.source.id | SCOPUS09599436-2021-31-6-SID85120906740 |