Электронный архив

Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow

Показать сокращенную информацию

dc.contributor.author Madzhidov T.I.
dc.contributor.author Rakhimbekova A.
dc.contributor.author Afonina V.A.
dc.contributor.author Gimadiev T.R.
dc.contributor.author Mukhametgaleev R.N.
dc.contributor.author Nugmanov R.I.
dc.contributor.author Baskin I.I.
dc.contributor.author Varnek A.
dc.date.accessioned 2022-02-09T20:34:49Z
dc.date.available 2022-02-09T20:34:49Z
dc.date.issued 2021
dc.identifier.issn 0959-9436
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/169164
dc.description.abstract The synthesis of the desired chemical compound is the main task of synthetic organic chemistry. The predictions of reaction conditions and some important quantitative characteristics of chemical reactions as yield and reaction rate can substantially help in the development of optimal synthetic routes and assessment of synthesis cost. Theoretical assessment of these parameters can be performed with the help of modern machine-learning approaches, which use available experimental data to develop predictive models called quantitative or qualitative structure–reactivity relationship (QSRR) modelling. In the article, we review the state-of-the-art in the QSRR area and give our opinion on emerging trends in this field.
dc.relation.ispartofseries Mendeleev Communications
dc.subject chemical reaction
dc.subject chemoinformatics
dc.subject QSAR
dc.subject QSPR
dc.subject QSRR
dc.subject reaction conditions
dc.subject reaction informatics
dc.subject reaction rate
dc.subject reaction yield
dc.title Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow
dc.type Review
dc.relation.ispartofseries-issue 6
dc.relation.ispartofseries-volume 31
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 769
dc.source.id SCOPUS09599436-2021-31-6-SID85120906740


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика