Электронный архив

Microorganisms maintain C:N stoichiometric balance by regulating the priming effect in long-term fertilized soils

Показать сокращенную информацию

dc.contributor.author Zhu Z.
dc.contributor.author Zhou J.
dc.contributor.author Shahbaz M.
dc.contributor.author Tang H.
dc.contributor.author Liu S.
dc.contributor.author Zhang W.
dc.contributor.author Yuan H.
dc.contributor.author Zhou P.
dc.contributor.author Alharbi H.
dc.contributor.author Wu J.
dc.contributor.author Kuzyakov Y.
dc.contributor.author Ge T.
dc.date.accessioned 2022-02-09T20:34:36Z
dc.date.available 2022-02-09T20:34:36Z
dc.date.issued 2021
dc.identifier.issn 0929-1393
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/169137
dc.description.abstract Labile carbon (C) inputs affect the soil carbon:nitrogen (C:N) ratio and microbial stoichiometric homeostasis, which control the intensity and direction of the priming effect (PE). Here, we clarified how soil microorganisms regulate enzyme production and PE to maintain the C:N stoichiometric balance. Specifically, we conducted an incubation experiment by adding 13C-labeled glucose to four long-term fertilized paddy soils: no fertilization; fertilization with mineral nitrogen, phosphorus, and potassium (NPK); NPK combined with straw; and NPK with manure (NPKM). After glucose addition, the dissolved organic carbon-to-ammonium (DOC:NH4+) ratio (24–39) initially increased, but subsequently decreased after day 2 following glucose exhaustion. In parallel, the microbial C:N imbalance [(DOC:NH4+):(microbial biomass C:microbial biomass N)] rapidly decreased from day 2 (4.6–7.2) to day 20 (<0.5). Thus, microorganisms became C limited after 20 days of incubation. Excess C, resulting from glucose addition, increased N-hydrolase (chitinase) production and N mining from soil organic matter (SOM) through positive PEs. However, C hydrolase (β-1,4-glucosidase and β-xylosidase) activity increased, while that of N hydrolase (chitinase) decreased, following glucose exhaustion. Consequently, the C:N microbial biomass ratio increased as the DOC:NH4+ ratio decreased, leading to negative PEs. NPKM-fertilized soil had the largest cumulative PE (2.3% of soil organic carbon) because it had the highest microbial biomass and iron (Fe) reduction rate. Thus, this increased N mining from SOM maintained the microbial C:N stoichiometric balance. We concluded that soil microorganisms regulate C- and N-hydrolase production to control the intensity and direction of PE, maintaining the C:N stoichiometric balance in response to labile C inputs.
dc.relation.ispartofseries Applied Soil Ecology
dc.subject Enzyme activity
dc.subject Long-term fertilization
dc.subject Microbial C:N imbalance
dc.subject Soil organic C mineralization
dc.subject Stoichiometric homeostasis
dc.title Microorganisms maintain C:N stoichiometric balance by regulating the priming effect in long-term fertilized soils
dc.type Article
dc.relation.ispartofseries-volume 167
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS09291393-2021-167-SID85105255871


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика