Электронный архив

Long-term warming and elevated CO<inf>2</inf> increase ammonia-oxidizing microbial communities and accelerate nitrification in paddy soil

Показать сокращенную информацию

dc.contributor.author Waqas M.A.
dc.contributor.author Li Y.
dc.contributor.author Ashraf M.N.
dc.contributor.author Ahmed W.
dc.contributor.author Wang B.
dc.contributor.author Sardar M.F.
dc.contributor.author Ma P.
dc.contributor.author Li R.
dc.contributor.author Wan Y.
dc.contributor.author Kuzyakov Y.
dc.date.accessioned 2022-02-09T20:34:35Z
dc.date.available 2022-02-09T20:34:35Z
dc.date.issued 2021
dc.identifier.issn 0929-1393
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/169136
dc.description.abstract Soil nitrification is a crucial process that increases nitrogen (N) availability for plants and drives nitrous oxide (N2O) emissions and nitrate (NO3−) leaching. Ongoing climate warming and elevated CO2 in the atmosphere may affect nitrification in opposite directions. However, their interactions are not known, especially in the long-term and in flooded conditions common in paddy soils. We conducted a long-term (9 years) field experiment with simultaneous manipulation of temperature (+2 °C above ambient) and CO2 (+60–100 ppm above ambient) to evaluate the impacts of warming and CO2 enrichment on the community structure, diversity, and population size of ammonia-oxidizing archaea (AOA) and bacteria (AOB), soil nitrification and physico-chemical characteristics. Elevated CO2 increased soil organic carbon (SOC) content (18%), microbial biomass N (65%), and carbon (27%). These changes accompanied an increment in AOB functional-gene abundance (181%) and soil nitrification rate (96%). Elevated temperature also increased (58%) soil nitrification rate. The combination of warming and CO2 enrichment enhanced AOB gene abundance (232%) and nitrification rate (133%). Impacts of these climate change factors on nitrification strongly depended on AOB gene abundance and microbial biomass, but not on AOA abundance. Higher root C inputs by rhizodeposition and pH under these climate change factors explained the substantial increases in AOB gene abundance, as nutrient-rich and alkaline soils favor AOB growth. By contrast, the AOA community was less sensitive to these climate change factors. Community composition, diversity, and richness of nitrifiers were remarkably resilient in response to individual and interactive impacts of warming and elevated CO2. Consequently, climate change will increase AOB population size but without community restructuring and will increase nitrification in paddy soils, which enhances N availability with consequences for crop productivity, N2O emissions, and NO3− leaching.
dc.relation.ispartofseries Applied Soil Ecology
dc.subject Ammonia-oxidizing archaea and bacteria
dc.subject Elevated CO concentration 2
dc.subject Elevated temperature
dc.subject Paddy soil
dc.subject Soil nitrification
dc.title Long-term warming and elevated CO<inf>2</inf> increase ammonia-oxidizing microbial communities and accelerate nitrification in paddy soil
dc.type Article
dc.relation.ispartofseries-volume 166
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS09291393-2021-166-SID85105865560


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика