Электронный архив

Infiltration-induced phreatic surface flow to periodic drains: Vedernikov–Engelund–Vasil'ev's legacy revisited

Показать сокращенную информацию

dc.contributor.author Kacimov A.R.
dc.contributor.author Obnosov Y.V.
dc.date.accessioned 2022-02-09T20:33:50Z
dc.date.available 2022-02-09T20:33:50Z
dc.date.issued 2021
dc.identifier.issn 0307-904X
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/169041
dc.description.abstract An explicit analytical solution is obtained to an old problem of a potential steady-state 2-D saturated Darcian flow in a homogeneous isotropic soil towards systematic drains modeled as line sinks (submerged drains under an overhanging of a phreatic surface), placed on a horizontal impervious substratum, with a constant-rate infiltration from the vadose zone. The corresponding boundary-value problem brings about a quarter-plane with a circular cut. A mathematical clue to solving the Hilbert problem for a two-dimensional holomorphic vector-function is found by engaging a hexagon, which has been earlier used in analytical solution to the problem of phreatic flow towards Zhukovsky's drains (slits) on a horizontal bedrock. A hodograph domain is mapped on this hexagon, which is mapped onto a reference plane where derivatives of two holomorphic functions are interrelated via a Polubarinova-Kochina type analysis. HYDRUS2D numerical simulations, based on solution of initial and boundary value problems to the Richards equation involving capillarity of the soil, concur with the analytical results. The position of the water table, isobars, isotachs, and streamlines are analyzed for various infiltration rates, sizes of the drains, boundary conditions imposed on them (empty drains are seepage face boundaries; full drains are constant piezometric head contours with various backpressures).
dc.relation.ispartofseries Applied Mathematical Modelling
dc.subject 2-D saturated and unsaturated seepage flows
dc.subject Complex potential and hodograph
dc.subject Conformal mappings
dc.subject HYDRUS2D simulations
dc.subject Isobars, isotachs, streamlines and phreatic surfaces
dc.subject Laplace's and Richards’ equations
dc.subject Zhukovsky's slit drain and circular drains
dc.title Infiltration-induced phreatic surface flow to periodic drains: Vedernikov–Engelund–Vasil'ev's legacy revisited
dc.type Article
dc.relation.ispartofseries-volume 91
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 989
dc.source.id SCOPUS0307904X-2021-91-SID85096199344


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика