Показать сокращенную информацию
dc.contributor.author | Quynh T.C. | |
dc.contributor.author | Abyzov A.N. | |
dc.contributor.author | Trang D.T. | |
dc.date.accessioned | 2022-02-09T20:33:18Z | |
dc.date.available | 2022-02-09T20:33:18Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0219-4988 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/168973 | |
dc.description.abstract | Rings in which each finitely generated right ideal is automorphism-invariant (rightfa-rings) are shown to be isomorphic to a formal matrix ring. Among other results it is also shown that (i) if R is a right nonsingular ring and n > 1 is an integer, then R is a right self injective regular ring if and only if the matrix ring Mn(R) is a right fa-ring, if and only if Mn(R) is a right automorphism-invariant ring and (ii) a right nonsingular ring R is a right fa-ring if and only if R is a direct sum of a square-full von Neumann regular right self-injective ring and a strongly regular ring containing all invertible elements of its right maximal ring of fractions. In particular, we show that a right semiartinian (or left semiartinian) ring R is a right nonsingular right fa-ring if and only if R is a left nonsingular left fa-ring. | |
dc.relation.ispartofseries | Journal of Algebra and its Applications | |
dc.subject | a -ring | |
dc.subject | Automorphism-invariant module | |
dc.subject | fa -ring | |
dc.subject | fq -ring | |
dc.title | Rings all of whose finitely generated ideals are automorphism-invariant | |
dc.type | Article | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS02194988-2021-SID85106056914 |