Kazan Federal University Digital Repository

Rings all of whose finitely generated ideals are automorphism-invariant

Show simple item record

dc.contributor.author Quynh T.C.
dc.contributor.author Abyzov A.N.
dc.contributor.author Trang D.T.
dc.date.accessioned 2022-02-09T20:33:18Z
dc.date.available 2022-02-09T20:33:18Z
dc.date.issued 2021
dc.identifier.issn 0219-4988
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/168973
dc.description.abstract Rings in which each finitely generated right ideal is automorphism-invariant (rightfa-rings) are shown to be isomorphic to a formal matrix ring. Among other results it is also shown that (i) if R is a right nonsingular ring and n > 1 is an integer, then R is a right self injective regular ring if and only if the matrix ring Mn(R) is a right fa-ring, if and only if Mn(R) is a right automorphism-invariant ring and (ii) a right nonsingular ring R is a right fa-ring if and only if R is a direct sum of a square-full von Neumann regular right self-injective ring and a strongly regular ring containing all invertible elements of its right maximal ring of fractions. In particular, we show that a right semiartinian (or left semiartinian) ring R is a right nonsingular right fa-ring if and only if R is a left nonsingular left fa-ring.
dc.relation.ispartofseries Journal of Algebra and its Applications
dc.subject a -ring
dc.subject Automorphism-invariant module
dc.subject fa -ring
dc.subject fq -ring
dc.title Rings all of whose finitely generated ideals are automorphism-invariant
dc.type Article
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS02194988-2021-SID85106056914


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics