Показать сокращенную информацию
dc.contributor.author | Ibrahimov R. | |
dc.contributor.author | Khadiev K. | |
dc.contributor.author | Prusis K. | |
dc.contributor.author | Yakaryllmaz A. | |
dc.date.accessioned | 2022-02-09T20:32:46Z | |
dc.date.available | 2022-02-09T20:32:46Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0129-0541 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/168904 | |
dc.description.abstract | We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las-Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata counterparts of these models. | |
dc.relation.ispartofseries | International Journal of Foundations of Computer Science | |
dc.subject | Affine automata | |
dc.subject | Las-Vegas algorithms | |
dc.subject | OBDDs | |
dc.subject | Quantum and probabilistic computation | |
dc.subject | State complexity | |
dc.subject | Zero-error | |
dc.title | Error-free affine, unitary, and probabilistic OBDDs | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 7 | |
dc.relation.ispartofseries-volume | 32 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 827 | |
dc.source.id | SCOPUS01290541-2021-32-7-SID85106157600 |