dc.contributor.author |
Ibrahimov R. |
|
dc.contributor.author |
Khadiev K. |
|
dc.contributor.author |
Prusis K. |
|
dc.contributor.author |
Yakaryllmaz A. |
|
dc.date.accessioned |
2022-02-09T20:32:46Z |
|
dc.date.available |
2022-02-09T20:32:46Z |
|
dc.date.issued |
2021 |
|
dc.identifier.issn |
0129-0541 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/168904 |
|
dc.description.abstract |
We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las-Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata counterparts of these models. |
|
dc.relation.ispartofseries |
International Journal of Foundations of Computer Science |
|
dc.subject |
Affine automata |
|
dc.subject |
Las-Vegas algorithms |
|
dc.subject |
OBDDs |
|
dc.subject |
Quantum and probabilistic computation |
|
dc.subject |
State complexity |
|
dc.subject |
Zero-error |
|
dc.title |
Error-free affine, unitary, and probabilistic OBDDs |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
7 |
|
dc.relation.ispartofseries-volume |
32 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
827 |
|
dc.source.id |
SCOPUS01290541-2021-32-7-SID85106157600 |
|