Электронный архив

Soil organic matter formation is controlled by the chemistry and bioavailability of organic carbon inputs across different land uses

Показать сокращенную информацию

dc.contributor.author Bahadori M.
dc.contributor.author Chen C.
dc.contributor.author Lewis S.
dc.contributor.author Boyd S.
dc.contributor.author Rashti M.R.
dc.contributor.author Esfandbod M.
dc.contributor.author Garzon-Garcia A.
dc.contributor.author Van Zwieten L.
dc.contributor.author Kuzyakov Y.
dc.date.accessioned 2022-02-09T20:32:29Z
dc.date.available 2022-02-09T20:32:29Z
dc.date.issued 2021
dc.identifier.issn 0048-9697
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/168869
dc.description.abstract Soil organic matter (SOM) formation involves microbial transformation of plant materials of various quality with physico-chemical stabilisation via soil aggregation. Land use and vegetation type can affect the litter chemistry and bioavailability of organic carbon (OC), and consequently influence the processing and stabilisation of OC into SOM. We used 13C nuclear magnetic resonance (13C NMR) and hot-water extraction to assess the changes in chemical composition and labile OC fractions during the transformation processes from leaf to litter to SOM depending on land use and vegetation type. The hot-water-extractable OC (HWEOC) decreased from leaf (43–65 g kg−1) to litter (19–23 g kg−1) to SOM (8–16 g kg−1) similar in four land use types: grassland, sugarcane, forest and banana. These trends demonstrated the uniform converging pathways of OC transformation and increasing stability by SOM formation. The preferential decomposition and decrease of labile OC fractions (∑% di-O-alkyl, O-alkyl and methoxyl) from leaf (54–69%) to SOM (41–43%) confirmed the increasing stability of the remaining compounds. Despite differences in the biochemical composition of the leaf tissues among the vegetation types, the proportions of labile OC fractions in SOM were similar across land uses. The OC content of soil was higher in forest (7.9%) and grassland (5.2%) compared to sugarcane (2.3%) and banana (3.0%). Consequently, the HWEOC per unit of soil weight was higher in forest and grassland (2.0 and 1.2 g kg−1 soil, respectively) compared to sugarcane and banana (0.3 and 0.4 g kg soil−1, respectively). The availability of labile SOM is dependent on the quantity of SOM not the chemical composition of SOM. In conclusion, labile OC fractions in SOM, as identified by 13C NMR, were similar across land use regardless of vegetation type and consequently, SOM formation leads to convergence of chemical composition despite diversity of OC sources.
dc.relation.ispartofseries Science of the Total Environment
dc.subject 13 C CPMAS NMR
dc.subject Carbon sequestration
dc.subject Hot water extractable C and N
dc.title Soil organic matter formation is controlled by the chemistry and bioavailability of organic carbon inputs across different land uses
dc.type Article
dc.relation.ispartofseries-volume 770
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS00489697-2021-770-SID85099780984


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика