Показать сокращенную информацию
dc.contributor.author | Nasibullin R. | |
dc.date.accessioned | 2022-02-09T20:30:48Z | |
dc.date.available | 2022-02-09T20:30:48Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0011-4642 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/168664 | |
dc.description.abstract | Hardy and Rellich type inequalities with an additional term are proved for compactly supported smooth functions on open subsets of the Euclidean space. We obtain one-dimensional Hardy type inequalities and their multidimensional analogues in convex domains with the finite inradius. We use Bessel functions and the Lamb constant. The statements proved are a generalization for the case of arbitrary p ⩾ 2 of the corresponding inequality proved by F. G. Avkhadiev, K.-J. Wirths (2011) for p = 2. Also we establish Rellich type inequalities on arbitrary domains, regular sets, on domains with θ-cone condition and on convex domains. | |
dc.relation.ispartofseries | Czechoslovak Mathematical Journal | |
dc.subject | 26D10 | |
dc.subject | 26D15 | |
dc.subject | Bessel function | |
dc.subject | distance function | |
dc.subject | Hardy inequality | |
dc.subject | Lamb constant | |
dc.subject | Laplace operator | |
dc.subject | Rellich type inequality | |
dc.title | Hardy and Rellich Type Inequalities with Remainders | |
dc.type | Article | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS00114642-2021-SID85108839777 |