Показать сокращенную информацию
dc.contributor.author | Bazhenov N.A. | |
dc.contributor.author | Kalimullin I.S. | |
dc.contributor.author | Yamaleev M.M. | |
dc.date.accessioned | 2021-02-26T20:45:13Z | |
dc.date.available | 2021-02-26T20:45:13Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1995-0802 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/163155 | |
dc.description.abstract | © 2020, Pleiades Publishing, Ltd. Abstract: It is well-known that every c.e. Turing degree is the degree of categoricity of a rigid structure. In this work we study the possibility of extension of this result to properly 2-c.e. degrees. We found a condition such that if a Δ02-degree is a degree of categoricity of a rigid structure and satisfies this condition then it must be c.e. Also we show that degrees of non-categoricity are dense in the c.e. degrees. | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.subject | computable isomorphism | |
dc.subject | computably enumerable sets | |
dc.subject | degree of categoricity | |
dc.subject | rigid structure | |
dc.subject | Turing degrees | |
dc.title | Strong Degrees of Categoricity and Weak Density | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 9 | |
dc.relation.ispartofseries-volume | 41 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1630 | |
dc.source.id | SCOPUS19950802-2020-41-9-SID85095597282 |