dc.contributor.author |
Bazhenov N.A. |
|
dc.contributor.author |
Kalimullin I.S. |
|
dc.contributor.author |
Yamaleev M.M. |
|
dc.date.accessioned |
2021-02-26T20:45:13Z |
|
dc.date.available |
2021-02-26T20:45:13Z |
|
dc.date.issued |
2020 |
|
dc.identifier.issn |
1995-0802 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/163155 |
|
dc.description.abstract |
© 2020, Pleiades Publishing, Ltd. Abstract: It is well-known that every c.e. Turing degree is the degree of categoricity of a rigid structure. In this work we study the possibility of extension of this result to properly 2-c.e. degrees. We found a condition such that if a Δ02-degree is a degree of categoricity of a rigid structure and satisfies this condition then it must be c.e. Also we show that degrees of non-categoricity are dense in the c.e. degrees. |
|
dc.relation.ispartofseries |
Lobachevskii Journal of Mathematics |
|
dc.subject |
computable isomorphism |
|
dc.subject |
computably enumerable sets |
|
dc.subject |
degree of categoricity |
|
dc.subject |
rigid structure |
|
dc.subject |
Turing degrees |
|
dc.title |
Strong Degrees of Categoricity and Weak Density |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
9 |
|
dc.relation.ispartofseries-volume |
41 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1630 |
|
dc.source.id |
SCOPUS19950802-2020-41-9-SID85095597282 |
|