Электронный архив

A robust fuzzy optimisation for a multi-objective pharmaceutical supply chain network design problem considering reliability and delivery time

Показать сокращенную информацию

dc.contributor.author Delfani F.
dc.contributor.author Samanipour H.
dc.contributor.author Beiki H.
dc.contributor.author Yumashev A.V.
dc.contributor.author Akhmetshin E.M.
dc.date.accessioned 2021-02-25T21:01:18Z
dc.date.available 2021-02-25T21:01:18Z
dc.date.issued 2020
dc.identifier.issn 2330-2674
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/162913
dc.description.abstract © 2020 Informa UK Limited, trading as Taylor & Francis Group. Due to the emergency role of pharmaceutical supply chains, there has been rapid development of optimisation techniques as one of efficient tools to improve pharmaceutical supply chain network design. To improve the pharmaceutical supply chain network, this study proposes a novel location-allocation-inventory model as a multi-objective, multi-echelon, multi-product, multi-period and multi-modal transportation system for pharmaceutical supply chain network design under uncertainty. The proposed model aims to optimise multiple objectives, including minimising the total costs and the delivery time while maximising the transportation system reliability simultaneously. To control the impacts of uncertain parameters including the ordering, delivery, purchase, and transportation costs and the capacity of vehicles, warehouses and of distribution centres, a robust fuzzy optimisation approach is developed. An efficient modification of a state-of-the-art evolutionary algorithm called the red deer algorithm (RDA) in its multi-objective form abbreviated as IMORDA is developed and compared with itself and well-established algorithms in the literature such as non-dominated sorting genetic algorithm (NSGA-II) and multi-objective particle swarm optimisation (MOPSO). The results confirm the applicability and efficiency of the IMORDA for the proposed model and encourage further development of this new metaheuristic.
dc.relation.ispartofseries International Journal of Systems Science: Operations and Logistics
dc.subject delivery time
dc.subject evolutionary algorithms
dc.subject Pharmaceutical supply chain
dc.subject red deer algorithm
dc.subject reliability
dc.subject robust fuzzy approach
dc.title A robust fuzzy optimisation for a multi-objective pharmaceutical supply chain network design problem considering reliability and delivery time
dc.type Article
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS23302674-2020-SID85097933841


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика