Электронный архив

Probabilistic approach for virtual screening based on multiple pharmacophores

Показать сокращенную информацию

dc.contributor.author Madzhidov T.I.
dc.contributor.author Rakhimbekova A.
dc.contributor.author Kutlushuna A.
dc.contributor.author Polishchuk P.
dc.date.accessioned 2021-02-25T20:56:14Z
dc.date.available 2021-02-25T20:56:14Z
dc.date.issued 2020
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/162721
dc.description.abstract © 2020 by the authors. Pharmacophore modeling is usually considered as a special type of virtual screening without probabilistic nature. Correspondence of at least one conformation of a molecule to pharmacophore is considered as evidence of its bioactivity. We show that pharmacophores can be treated as one-class machine learning models, and the probability the reflecting model’s confidence can be assigned to a pharmacophore on the basis of their precision of active compounds identification on a calibration set. Two schemes (Max and Mean) of probability calculation for consensus prediction based on individual pharmacophore models were proposed. Both approaches to some extent correspond to commonly used consensus approaches like the common hit approach or the one based on a logical OR operation uniting hit lists of individual models. Unlike some known approaches, the proposed ones can rank compounds retrieved by multiple models. These approaches were benchmarked on multiple ChEMBL datasets used for ligand-based pharmacophore modeling and externally validated on corresponding DUD-E datasets. The influence of complexity of pharmacophores and their performance on a calibration set on results of virtual screening was analyzed. It was shown that Max and Mean approaches have superior early enrichment to the commonly used approaches. Thus, a well-performing, easy-to-implement, and probabilistic alternative to existing approaches for pharmacophore-based virtual screening was proposed.
dc.subject Ligand-based virtual screening
dc.subject Machine learning
dc.subject Pharmacophores
dc.subject Virtual screening
dc.title Probabilistic approach for virtual screening based on multiple pharmacophores
dc.type Article
dc.relation.ispartofseries-issue 2
dc.relation.ispartofseries-volume 25
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS-2020-25-2-SID85078149603


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика