Электронный архив

Genetic algorithm-based personalized models of human cardiac action potential

Показать сокращенную информацию

dc.contributor.author Smirnov D.
dc.contributor.author Pikunov A.
dc.contributor.author Syunyaev R.
dc.contributor.author Deviatiiarov R.
dc.contributor.author Gusev O.
dc.contributor.author Aras K.
dc.contributor.author Gams A.
dc.contributor.author Koppel A.
dc.contributor.author Efimov I.R.
dc.date.accessioned 2021-02-25T20:55:53Z
dc.date.available 2021-02-25T20:55:53Z
dc.date.issued 2020
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/162686
dc.description.abstract © 2020 Smirnov et al. We present a novel modification of genetic algorithm (GA) which determines personalized parameters of cardiomyocyte electrophysiology model based on set of experimental human action potential (AP) recorded at different heart rates. In order to find the steady state solution, the optimized algorithm performs simultaneous search in the parametric and slow variables spaces. We demonstrate that several GA modifications are required for effective convergence. Firstly, we used Cauchy mutation along a random direction in the parametric space. Secondly, relatively large number of elite organisms (6-10% of the population passed on to new generation) was required for effective convergence. Test runs with synthetic AP as input data indicate that algorithm error is low for high amplitude ionic currents (1.6±1.6% for IKr, 3.2±3.5% for IK1, 3.9±3.5% for INa, 8.2±6.3% for ICaL). Experimental signal-to-noise ratio above 28 dB was required for high quality GA performance. GA was validated against optical mapping recordings of human ventricular AP and mRNA expression profile of donor hearts. In particular, GA output parameters were rescaled proportionally to mRNA levels ratio between patients. We have demonstrated that mRNA-based models predict the AP waveform dependence on heart rate with high precision. The latter also provides a novel technique of model personalization that makes it possible to map gene expression profile to cardiac function.
dc.title Genetic algorithm-based personalized models of human cardiac action potential
dc.type Article
dc.relation.ispartofseries-issue 5
dc.relation.ispartofseries-volume 15
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS-2020-15-5-SID85084412809


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика