Kazan Federal University Digital Repository

Solving the problem of sentiment analysis using neural network models

Show simple item record

dc.contributor.author Akhmetgaliev A.
dc.contributor.author Gafarov F.
dc.contributor.author Sitdikova F.
dc.date.accessioned 2021-02-25T20:55:12Z
dc.date.available 2021-02-25T20:55:12Z
dc.date.issued 2020
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/162630
dc.description.abstract © 2020, Advanced Scientific Research. All rights reserved. The article considers methods that create a vector representation of words in the n-dimensional vector space in order to solving the problem of sentiment analysis based on neural network models of natural language processing. The methods are based on "Word2Vec", "GloVe", "FastText" technology. Approaches are used in the tasks of classification, sentiment analysis, typo correction, recommendation systems. We present the results of classifications comparison in the problem of sentiment analysis of a multilayer perceptron, a convolutional and recurrent neural network, decision trees (random forest), support vector machine (SVM), naive Bayes classifier (NB), and k-nearest neighbors (K-NN). The results of the classification are presented for three data sets: Twitter messages, reviews of various goods and services, Russian-language news.
dc.subject Convolutional neural networks
dc.subject FastText
dc.subject GloVe
dc.subject Recurrent neural networks
dc.subject Sentiment analysis
dc.subject Vector word representation
dc.subject Word2Vec
dc.title Solving the problem of sentiment analysis using neural network models
dc.type Article
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 12
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 850
dc.source.id SCOPUS-2020-12-1-SID85078479280


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics