Показать сокращенную информацию
dc.contributor.author | Bikchentaev A.M. | |
dc.date.accessioned | 2021-02-25T20:51:42Z | |
dc.date.available | 2021-02-25T20:51:42Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1995-0802 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/162540 | |
dc.description.abstract | © 2020, PleiadesT Publishing,T Ltd. Abstract—In year 2006 the author proposed an approach to the invariant subspace problem for an operator on a Hilbert space, based on projection-convex combinations in C*-algebras with the unitary factorization property. In this paper, we present an operator inequality characterizing the invariant subspace of such an operator. Eight corollaries are obtained. For an operator C*-algebra A with a faithful trace, we give a sufficient condition of commutation for a partial isometry from A with a projection onto its invariant subspace. | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.subject | C*-algebra | |
dc.subject | commutativity | |
dc.subject | Hilbert space | |
dc.subject | invariant subspace | |
dc.subject | linear operator | |
dc.subject | operator inequality | |
dc.subject | partial isometry | |
dc.subject | projection | |
dc.subject | trace | |
dc.title | Invariant Subspaces of Operators on a Hilbert Space | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 4 | |
dc.relation.ispartofseries-volume | 41 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 613 | |
dc.source.id | SCOPUS19950802-2020-41-4-SID85088638248 |