Электронный архив

Predictive autoregressive models of the Russian stock market using macroeconomic variables

Показать сокращенную информацию

dc.contributor.author Bagautdinova N.G.
dc.contributor.author Kadochnikova E.I.
dc.contributor.author Bakirova A.N.
dc.date.accessioned 2021-02-25T20:48:26Z
dc.date.available 2021-02-25T20:48:26Z
dc.date.issued 2020
dc.identifier.issn 1929-4409
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/162471
dc.description.abstract © 2020 Bagautdinova et al.; Licensee Lifescience Global. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. This article evaluates the relationship of macroeconomic variables of the domestic market with the stock index on the example of the Moscow exchange and selects forecast specifications based on an integrated auto regression model - the moving average. The methods that have been used are included in integrated auto regression-moving average model with exogenous variables and seasonal component, Box&Jenkins approach, auto-arima in R function, Hyndman & Athanasopoulos approach, and maximum likelihood method. The results demonstrate that the inclusion of external regressors in the one-dimensional ARIMAX model improves its predictive characteristics. Time series of macro-indicators of the domestic market - the consumer price index, the index of the output of goods and services for basic activities are not interrelated with the index of the Moscow exchange, with the exception of the dollar exchange rate. The positive correlation between the Moscow exchange index and macro indicators of the world economy - the S&P stock index, the price of Brent oil, was confirmed. In models with minimal AIC, a rare presence of the MA component was found, which shows that the prevailing dependence of the stock market yield on previous values of the yield (AR component) and thus, better predictability of the yield. It has shown that for stock market forecasting, "manual" selection of the ARIMA model type can give better results (minimum AIC and minimum RMSE) than the built-in auto.arima algorithm in R. It is shown that from a practical point of view, when selecting forecast models, the RMSE criterion is more useful for investors, which measures the standard error of the forecast in points of the stock index.
dc.relation.ispartofseries International Journal of Criminology and Sociology
dc.subject Autoregression model
dc.subject Forecast error
dc.subject Macroeconomics
dc.subject Stock market
dc.title Predictive autoregressive models of the Russian stock market using macroeconomic variables
dc.type Article
dc.relation.ispartofseries-volume 9
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 2439
dc.source.id SCOPUS19294409-2020-9-SID85098936227


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика