Электронный архив

Using artificial intelligence algorithms in legal proceedings in the ecosystem services and digital economy

Показать сокращенную информацию

dc.contributor.author Valeev D.K.
dc.contributor.author Nuriev A.G.
dc.contributor.author Makolkin N.N.
dc.date.accessioned 2021-02-25T20:46:15Z
dc.date.available 2021-02-25T20:46:15Z
dc.date.issued 2020
dc.identifier.issn 1735-3033
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/162375
dc.description.abstract © by University of Guilan, Printed in I.R. Iran. Machine learning algorithms can permit the usage of frequently available 'big data' and contribute to utilizing ecosystem service models across scales, examining and predicting the issues of these services to disaggregated beneficiaries. Digitalization of public relations involves changing the way of processing information and the speed of its perception. The introduction of digital resources leads to the automation of a number of processes that were previously executed by people and required a significant amount of time. The practical implementation of the achievements of the scientific and technical method that was started in production reaches some spheres that seemed unachievable for artificial intelligence. Normative regulation has to take into account the need to use artificial intelligence algorithms. A particular interest is paid to the possibility of using such algorithms in the administration of justice as well as ecosystem services.
dc.relation.ispartofseries Caspian Journal of Environmental Sciences
dc.subject Algorithm
dc.subject Artificial intelligence
dc.subject Digital economy
dc.subject Digital justice
dc.subject Digital transformation
dc.subject Ecosystem services
dc.title Using artificial intelligence algorithms in legal proceedings in the ecosystem services and digital economy
dc.type Article
dc.relation.ispartofseries-issue 5
dc.relation.ispartofseries-volume 18
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 589
dc.source.id SCOPUS17353033-2020-18-5-SID85099403084


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика