Электронный архив

Formation of regression model for analysis of complex systems using methodology of genetic algorithms

Показать сокращенную информацию

dc.contributor.author Mokshin A.V.
dc.contributor.author Mirziyarova D.A.
dc.contributor.author Mokshin V.V.
dc.date.accessioned 2021-02-25T20:43:48Z
dc.date.available 2021-02-25T20:43:48Z
dc.date.issued 2020
dc.identifier.issn 1561-4085
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/162327
dc.description.abstract © 2020, Education and Upbringing Publishing. All rights reserved. This study presents the approach to analyze evolution of an arbitrary complex system whose behavior is characterized by a set of different time-dependent factors. The key requirement for these factors is that they must contain an information about the system only; it does not matter at all what the nature (physical, biological, social, economic, etc.) of a complex system is. Within the framework of the presented theoretical approach, the problem of searching for non-linear regression models that express the relationship between these factors for a complex system under study is solved. It will be shown that this problem can be solved using the methodology of genetic (evolutionary) algorithms. The resulting regression models make it possible to predict the most probable evolution of the considered system, as well as to determine the significance of some factors and, thereby, to formulate some recommendations to drive by this system. It will be shown that the presented theoretical approach can be used to analyze data (information) characterizing the educational process in the discipline ”Physics” in the secondary school, and to develop the strategies for improving academic performance in this discipline.
dc.relation.ispartofseries Nonlinear Phenomena in Complex Systems
dc.subject Artificial intelligence
dc.subject Complex system
dc.subject Data analysis
dc.subject Genetic algorithms
dc.subject Machine learning
dc.subject Regression model
dc.subject Statistical physics
dc.title Formation of regression model for analysis of complex systems using methodology of genetic algorithms
dc.type Article
dc.relation.ispartofseries-issue 3
dc.relation.ispartofseries-volume 23
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 317
dc.source.id SCOPUS15614085-2020-23-3-SID85095955865


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика