Электронный архив

Passive underwater target tracking: Conditionally minimax nonlinear filtering with bearing-doppler observations

Показать сокращенную информацию

dc.contributor.author Borisov A.
dc.contributor.author Bosov A.
dc.contributor.author Miller B.
dc.contributor.author Miller G.
dc.date.accessioned 2021-02-25T20:43:01Z
dc.date.available 2021-02-25T20:43:01Z
dc.date.issued 2020
dc.identifier.issn 1424-8220
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/162285
dc.description.abstract © 2020 by the authors. Licensee MDPI, Basel, Switzerland. The paper presents an application of the Conditionally-Minimax Nonlinear Filtering (CMNF) algorithm to the online estimation of underwater vehicle movement given a combination of sonar and Doppler discrete-time noisy sensor observations. The proposed filter postulates recurrent “prediction–correction” form with some predefined basic prediction and correction terms, and then they are optimally fused. The CMNF estimates have the following advantageous features. First, the obtained estimates are unbiased. Second, the theoretical covariance matrix of CMNF errors meets the real values. Third, the CMNF algorithm gives a possibility to choose the preliminary observation transform, basic prediction, and correction functions in any specific case of the observation system to improve the estimate accuracy significantly. All the features of conditionally-minimax estimates are demonstrated by the regression example of random position estimate given the noisy bearing observations. The contribution of the paper is the numerical study of the CMNF algorithm applied to the underwater target tracking given bearing-only and bearing-Doppler observations.
dc.relation.ispartofseries Sensors (Switzerland)
dc.subject Bearing-Doppler measurements
dc.subject Bearing-only measurements
dc.subject Conditionally minimax nonlinear filter
dc.subject Machine learning
dc.subject Nonlinear filtering
dc.subject Port-starboard ambiguity
dc.subject Underwater target tracking
dc.title Passive underwater target tracking: Conditionally minimax nonlinear filtering with bearing-doppler observations
dc.type Article
dc.relation.ispartofseries-issue 8
dc.relation.ispartofseries-volume 20
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS14248220-2020-20-8-SID85083718275


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика