Показать сокращенную информацию
dc.contributor.author | Galyautdinov I.G. | |
dc.contributor.author | Lavrentyeva E.E. | |
dc.date.accessioned | 2021-02-25T20:37:56Z | |
dc.date.available | 2021-02-25T20:37:56Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/162109 | |
dc.description.abstract | © 2020, Allerton Press, Inc. Using the fundamental basis of the field $L_9=\mathbb{Q} (2\cos(\pi/9)),$ the form $N_{L_9}(\gamma)=f(x, y, z)$ is found and the Diophantine equation $f(x,y,z)=a$ is solved. A similar scheme is used to construct the form $N_{L_7}(\gamma)=g(x,y,z)$. The Diophantine equation $g (x, y, z)=a$ is solved. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | algebraic integer number | |
dc.subject | basic units of an algebraic field | |
dc.subject | Diophantine equation | |
dc.subject | fundamental basis of an algebraic number field | |
dc.subject | norm of algebraic number | |
dc.title | Diophantine Equation Generated by the Maximal Subfield of a Circular Field | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 7 | |
dc.relation.ispartofseries-volume | 64 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 38 | |
dc.source.id | SCOPUS1066369X-2020-64-7-SID85089425704 |