Kazan Federal University Digital Repository

Diophantine Equation Generated by the Maximal Subfield of a Circular Field

Show simple item record

dc.contributor.author Galyautdinov I.G.
dc.contributor.author Lavrentyeva E.E.
dc.date.accessioned 2021-02-25T20:37:56Z
dc.date.available 2021-02-25T20:37:56Z
dc.date.issued 2020
dc.identifier.issn 1066-369X
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/162109
dc.description.abstract © 2020, Allerton Press, Inc. Using the fundamental basis of the field $L_9=\mathbb{Q} (2\cos(\pi/9)),$ the form $N_{L_9}(\gamma)=f(x, y, z)$ is found and the Diophantine equation $f(x,y,z)=a$ is solved. A similar scheme is used to construct the form $N_{L_7}(\gamma)=g(x,y,z)$. The Diophantine equation $g (x, y, z)=a$ is solved.
dc.relation.ispartofseries Russian Mathematics
dc.subject algebraic integer number
dc.subject basic units of an algebraic field
dc.subject Diophantine equation
dc.subject fundamental basis of an algebraic number field
dc.subject norm of algebraic number
dc.title Diophantine Equation Generated by the Maximal Subfield of a Circular Field
dc.type Article
dc.relation.ispartofseries-issue 7
dc.relation.ispartofseries-volume 64
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 38
dc.source.id SCOPUS1066369X-2020-64-7-SID85089425704


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics