dc.contributor.author |
Galyautdinov I.G. |
|
dc.contributor.author |
Lavrentyeva E.E. |
|
dc.date.accessioned |
2021-02-25T20:37:56Z |
|
dc.date.available |
2021-02-25T20:37:56Z |
|
dc.date.issued |
2020 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/162109 |
|
dc.description.abstract |
© 2020, Allerton Press, Inc. Using the fundamental basis of the field $L_9=\mathbb{Q} (2\cos(\pi/9)),$ the form $N_{L_9}(\gamma)=f(x, y, z)$ is found and the Diophantine equation $f(x,y,z)=a$ is solved. A similar scheme is used to construct the form $N_{L_7}(\gamma)=g(x,y,z)$. The Diophantine equation $g (x, y, z)=a$ is solved. |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
algebraic integer number |
|
dc.subject |
basic units of an algebraic field |
|
dc.subject |
Diophantine equation |
|
dc.subject |
fundamental basis of an algebraic number field |
|
dc.subject |
norm of algebraic number |
|
dc.title |
Diophantine Equation Generated by the Maximal Subfield of a Circular Field |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
7 |
|
dc.relation.ispartofseries-volume |
64 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
38 |
|
dc.source.id |
SCOPUS1066369X-2020-64-7-SID85089425704 |
|