Показать сокращенную информацию
dc.contributor.author | Troshin P.I. | |
dc.date.accessioned | 2021-02-25T20:37:52Z | |
dc.date.available | 2021-02-25T20:37:52Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/162105 | |
dc.description.abstract | © 2020, Allerton Press, Inc. We propose a spherical and a hyperbolic (on the Lobachevskii plane) analogues for the Koch curve and the Koch snowflake. The formulae describing metric characteristics of these fractals are given. We also suggest the method of construction for these curves with the help of the groups of rigid motions of the spaces in question. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | fractal | |
dc.subject | hyperbolic geometry | |
dc.subject | Koch curve | |
dc.subject | Koch island | |
dc.subject | Koch snowflake | |
dc.subject | L-system | |
dc.subject | Lobachevskii geometry | |
dc.subject | spherical geometry | |
dc.title | Koch Fractal in Non-Euclidean Geometries | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 6 | |
dc.relation.ispartofseries-volume | 64 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 86 | |
dc.source.id | SCOPUS1066369X-2020-64-6-SID85089073310 |