Показать сокращенную информацию
dc.contributor.author | Zaitseva N.V. | |
dc.date.accessioned | 2021-02-25T20:37:44Z | |
dc.date.available | 2021-02-25T20:37:44Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1064-5624 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/162087 | |
dc.description.abstract | © 2020, Pleiades Publishing, Ltd. Abstract: A one-parameter family of global solutions of a two-dimensional hyperbolic differential-difference equation with an operator acting with respect to a space variable is constructed. A theorem is proved stating that the resulting solutions are classical for all parameter values if the symbol of the difference operator of the equation has a positive real part. Classes of equations for which this condition is satisfied are given. | |
dc.relation.ispartofseries | Doklady Mathematics | |
dc.subject | classical solution | |
dc.subject | differential-difference equation | |
dc.subject | Fourier transform | |
dc.subject | hyperbolic equation | |
dc.title | On Global Classical Solutions of Hyperbolic Differential-Difference Equations | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 101 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 115 | |
dc.source.id | SCOPUS10645624-2020-101-2-SID85088162273 |