Электронный архив

Neurofuzzy model of formation of knowledge bases for selection of geological and technical measures in oil fields

Показать сокращенную информацию

dc.contributor.author Panischev O.Y.
dc.contributor.author Ahmedshina E.N.
dc.contributor.author Kataseva D.V.
dc.contributor.author Anikin I.V.
dc.contributor.author Katasev A.S.
dc.contributor.author Akhmetvaleev A.M.
dc.contributor.author Nasybullin A.V.
dc.date.accessioned 2021-02-25T20:36:13Z
dc.date.available 2021-02-25T20:36:13Z
dc.date.issued 2020
dc.identifier.issn 0974-3154
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/161988
dc.description.abstract © International Research Publication House This paper poses and solves the problem of developing the up-to-date neuro-fuzzy model of formation of a knowledge base for an intelligent decision-making support system for selection of geological and technical measures in oil fields. The analysis of the traditional approach to the formation of fuzzy knowledge bases made it possible to reveal its shortcomings associated with the need to attract experts, structure and formalize the system of decision-making rules by them. This process is laborious and does not always provide an acceptable result. To eliminate the disadvantages of the traditional approach, we proposed an approach to the automatic formation of a knowledge base based on the construction of a neuro-fuzzy model of a collective of fuzzy neural networks. We formulated the requirements in view of the formed fuzzy rules. We developed a scheme for using the rules of the knowledge base to solve the problem of selecting geological and technical measures in oil fields. We tested the generated knowledge base on the example of solving the problem of selecting geological and technical measures for various wells of the Feofanovskoye Field. Application of the knowledge base made it possible to select a list of optimal measures for given wells. The experiment results are satisfactory and are confirmed by the positive expert assessments, selecting geological and technical measures at this field.
dc.relation.ispartofseries International Journal of Engineering Research and Technology
dc.subject Decision-Making Support
dc.subject Geological And Technical Measures
dc.subject Knowledge Base
dc.subject Neuro-Fuzzy Model
dc.subject Oil Field
dc.title Neurofuzzy model of formation of knowledge bases for selection of geological and technical measures in oil fields
dc.type Article
dc.relation.ispartofseries-issue 11
dc.relation.ispartofseries-volume 13
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 3589
dc.source.id SCOPUS09743154-2020-13-11-SID85097907924


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика