Показать сокращенную информацию
dc.contributor.author | Bazhenov N. | |
dc.contributor.author | Mustafa M. | |
dc.contributor.author | San Mauro L. | |
dc.contributor.author | Sorbi A. | |
dc.contributor.author | Yamaleev M. | |
dc.date.accessioned | 2021-02-25T20:35:40Z | |
dc.date.available | 2021-02-25T20:35:40Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0933-5846 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/161926 | |
dc.description.abstract | © 2020, The Author(s). Computably enumerable equivalence relations (ceers) received a lot of attention in the literature. The standard tool to classify ceers is provided by the computable reducibility ⩽ c. This gives rise to a rich degree structure. In this paper, we lift the study of c-degrees to the Δ20 case. In doing so, we rely on the Ershov hierarchy. For any notation a for a non-zero computable ordinal, we prove several algebraic properties of the degree structure induced by ⩽ c on the Σa-1\Πa-1 equivalence relations. A special focus of our work is on the (non)existence of infima and suprema of c-degrees. | |
dc.relation.ispartofseries | Archive for Mathematical Logic | |
dc.subject | Computability theory | |
dc.subject | Computably enumerable equivalence relations | |
dc.subject | Ershov hierarchy | |
dc.subject | Δ equivalence relations 2 0 | |
dc.title | Classifying equivalence relations in the Ershov hierarchy | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 7-8 | |
dc.relation.ispartofseries-volume | 59 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 835 | |
dc.source.id | SCOPUS09335846-2020-59-78-SID85079714401 |