Показать сокращенную информацию
dc.contributor.author | Bazhenov N. | |
dc.contributor.author | Kalimullin I. | |
dc.contributor.author | Melnikov A. | |
dc.contributor.author | Ng K.M. | |
dc.date.accessioned | 2021-02-25T20:34:55Z | |
dc.date.available | 2021-02-25T20:34:55Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0304-3975 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/161840 | |
dc.description.abstract | © 2020 Elsevier B.V. We systematically investigate into the online content of finitely generated structures. The online content of a potentially infinite algebraic or combinatorial structure is perhaps best reflected by its PR-degrees (to be defined). We confirm a natural conjecture by showing that the PR-degrees of a finitely generated structure must be dense. Remarkably, we show that PR-degrees of an f.g. structure do not have to be upwards dense. As an application of our techniques, we refute a natural conjecture about honestly generated structures (to be stated). | |
dc.relation.ispartofseries | Theoretical Computer Science | |
dc.subject | Finitely generated structure | |
dc.subject | Isomorphism | |
dc.subject | Primitive recursive function | |
dc.title | Online presentations of finitely generated structures | |
dc.type | Article | |
dc.relation.ispartofseries-volume | 844 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 195 | |
dc.source.id | SCOPUS03043975-2020-844-SID85090487866 |