Показать сокращенную информацию
dc.contributor.author | Helpin T. | |
dc.contributor.author | Volkov M.S. | |
dc.date.accessioned | 2021-02-25T20:34:35Z | |
dc.date.available | 2021-02-25T20:34:35Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0217-751X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/161800 | |
dc.description.abstract | © 2020 World Scientific Publishing Company. We study the metric-affine versions of scalar-tensor theories whose connection enters the action only algebraically. We show that the connection can be integrated out, resulting in an equivalent metric theory. Specifically, we consider the metric-affine generalisations of the subset of the Horndeski theory whose action is linear in second derivatives of the scalar field. We determine the connection and find that it can describe a scalar-tensor Weyl geometry without a Riemannian frame. Still, as this connection enters the action algebraically, the theory admits the dynamically equivalent (pseudo)-Riemannian formulation in the form of an effective metric theory with an extra K-essence term. This may have interesting phenomenological applications. | |
dc.relation.ispartofseries | International Journal of Modern Physics A | |
dc.subject | Horndeski theory | |
dc.subject | Palatini approach | |
dc.title | A metric-affine version of the Horndeski theory | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2-3 | |
dc.relation.ispartofseries-volume | 35 | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS0217751X-2020-35-23-SID85078763568 |