Показать сокращенную информацию
dc.contributor.author | Tsentsevitsky A.N. | |
dc.contributor.author | Khuzakhmetova V.F. | |
dc.contributor.author | Khaziev E.F. | |
dc.contributor.author | Kovyazina I.V. | |
dc.date.accessioned | 2021-02-25T20:33:49Z | |
dc.date.available | 2021-02-25T20:33:49Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0097-0549 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/161739 | |
dc.description.abstract | © 2020, Springer Science+Business Media, LLC, part of Springer Nature. We report here experiments addressing the contribution of L-type Ca2+ channels to evoked acetylcholine secretion from frog and mouse motor nerve endings with active and inactivated voltage-gated K+ channels. These studies evaluated the effects of the specific L-type Ca2+ channel blocker nitrendipine on the quantum composition of endplate currents and the time course of the secretion of acetylcholine quanta in intact preparations and after preliminary blockade of voltage-gated K+ channels with 4-aminopyridine (4-AP) in medium with depressed and physiological Ca2+ levels. A fluorescence method was used to measure calcium transients reflecting the integral influx of Ca2+ into nerve endings; computer modeling was applied to the processes underlying exocytosis in the presence of the two types of Ca2+ channel (N and L) and with different durations of nerve ending action potentials. In frog synapses, L-type Ca2+ channels were found to contribute to evoked acetylcholine secretion in the presence of active K+ channels, but only in the presence of a depressed Ca2+ level in the medium; on inactivation of voltage-gated K+ channels, the contribution of L-type channels to the secretory process became less significant. At a physiological Ca2+ level, the involvement of L-type channels in evoked acetylcholine secretion was apparent, as in mouse synapses, only in conditions of blockade of voltage-gated K+ channels. | |
dc.relation.ispartofseries | Neuroscience and Behavioral Physiology | |
dc.subject | acetylcholine | |
dc.subject | calcium channel | |
dc.subject | neuromuscular synapse | |
dc.subject | potassium channel | |
dc.title | The Contribution of L-Type Calcium Channels to Acetylcholine Secretion in Frog and Mouse Neuromuscular Junctions with Active and Inactivated Voltage-Gated Potassium Channels | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 7 | |
dc.relation.ispartofseries-volume | 50 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 920 | |
dc.source.id | SCOPUS00970549-2020-50-7-SID85092233961 |