Электронный архив

Combined Convolutional and Perceptron Neural Networks for Handwritten Digits Recognition

Показать сокращенную информацию

dc.contributor.author Kayumov Z.
dc.contributor.author Tumakov D.
dc.contributor.author Mosin S.
dc.date.accessioned 2021-02-25T06:54:46Z
dc.date.available 2021-02-25T06:54:46Z
dc.date.issued 2020
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/161479
dc.description.abstract © 2020 IEEE. The use of a combination of a convolutional neural network and multilayer perceptrons for recognizing handwritten digits is considered. Recognition is carried out by two sets of networks following each other. The first neural network selects two digits with maximum activation functions. Depending on the winners, the following network is activated (multilayer perceptron), which selects one digit from two. The proposed algorithm is tested on the data from MNIST. The recognition error is 0.75%. Obtained results demonstrate that the minimum error with this approach is 0.68%, and the accuracy of the F-metric is about 0.99 for each digit. The main feature of the proposed solution is dealt with the fact that the proposed cascaded combination of neural networks provides a sufficiently high accuracy with a simple architecture.
dc.subject handwritten digits
dc.subject hierarchical convolutional neural network
dc.subject MNIST
dc.subject recognition
dc.title Combined Convolutional and Perceptron Neural Networks for Handwritten Digits Recognition
dc.type Conference Paper
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS-2020-SID85094597199


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика