Электронный архив

Predictability Assess of Multipath Phase Using ARIMA Model

Показать сокращенную информацию

dc.contributor.author Sulimov A.I.
dc.contributor.author Sadovnikov M.A.
dc.contributor.author Galiev A.A.
dc.contributor.author Karpov A.V.
dc.contributor.author Sherstyukov O.N.
dc.date.accessioned 2021-02-25T06:54:26Z
dc.date.available 2021-02-25T06:54:26Z
dc.date.issued 2020
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/161434
dc.description.abstract © 2020 IEEE. Physical Layer Security is a promising technique for establishing a secret encryption key in wireless communications. The secret key is distilled from the Channel State Information under conditions of its random fast fading. However, random channel variations are quite smooth on short-term intervals and can be predicted using previous samples. This is a serious threat to secrecy of the generated encryption key. In this study, we assess both prediction error and prediction horizon for real data set of a fast fading carrier phase using the ARIMA model. Influence of the autoregressive model order on the prediction accuracy is considered, optimum ARIMA parameters for forecasting the experimental data are found. We also compare prediction accuracy of the ARIMA that uses fixed model parameters versus accuracy of the auto-ARIMA that employs adaptive estimation of model parameters in different timeframes of the data. Our results showed that effective prediction of real samples of multipath phase was possible only at intervals shorter than 150 ms, and maximum prediction gain did not exceed 40 degrees compared to prediction based on the last known sample.
dc.subject ARIMA model
dc.subject autoregressive models
dc.subject carrier phase
dc.subject channel prediction
dc.subject fast fading
dc.subject multipath radio propagation
dc.subject physical layer security
dc.subject wireless key distribution
dc.title Predictability Assess of Multipath Phase Using ARIMA Model
dc.type Conference Paper
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS-2020-SID85084591600


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика