Показать сокращенную информацию
dc.contributor.author | Mingachev E. | |
dc.contributor.author | Lavrenov R. | |
dc.contributor.author | Tsoy T. | |
dc.contributor.author | Matsuno F. | |
dc.contributor.author | Svinin M. | |
dc.contributor.author | Suthakorn J. | |
dc.contributor.author | Magid E. | |
dc.date.accessioned | 2021-02-25T06:51:02Z | |
dc.date.available | 2021-02-25T06:51:02Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/161079 | |
dc.description.abstract | © 2020, Springer Nature Switzerland AG. Stable and robust path planning of a ground mobile robot requires a combination of accuracy and low latency in its state estimation. Yet, state estimation algorithms should provide these under computational and power constraints of a robot embedded hardware. The presented study offers a comparative analysis of four cutting edge publicly available within robot operating system (ROS) monocular simultaneous localization and mapping methods: DSO, LDSO, ORB-SLAM2, and DynaSLAM. The analysis considers pose estimation accuracy (alignment, absolute trajectory, and relative pose root mean square error) and trajectory precision of the four methods at TUM-Mono and EuRoC datasets. | |
dc.relation.ispartofseries | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.subject | Benchmark testing | |
dc.subject | Monocular SLAM | |
dc.subject | Path planning | |
dc.subject | Robot sensing systems | |
dc.subject | Simultaneous localization and mapping | |
dc.subject | State estimation | |
dc.subject | Visual odometry | |
dc.subject | Visual SLAM | |
dc.title | Comparison of ROS-Based Monocular Visual SLAM Methods: DSO, LDSO, ORB-SLAM2 and DynaSLAM | |
dc.type | Conference Paper | |
dc.relation.ispartofseries-volume | 12336 LNAI | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 222 | |
dc.source.id | SCOPUS03029743-2020-12336-SID85092904826 |