dc.contributor.author |
Mingachev E. |
|
dc.contributor.author |
Lavrenov R. |
|
dc.contributor.author |
Tsoy T. |
|
dc.contributor.author |
Matsuno F. |
|
dc.contributor.author |
Svinin M. |
|
dc.contributor.author |
Suthakorn J. |
|
dc.contributor.author |
Magid E. |
|
dc.date.accessioned |
2021-02-25T06:51:02Z |
|
dc.date.available |
2021-02-25T06:51:02Z |
|
dc.date.issued |
2020 |
|
dc.identifier.issn |
0302-9743 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/161079 |
|
dc.description.abstract |
© 2020, Springer Nature Switzerland AG. Stable and robust path planning of a ground mobile robot requires a combination of accuracy and low latency in its state estimation. Yet, state estimation algorithms should provide these under computational and power constraints of a robot embedded hardware. The presented study offers a comparative analysis of four cutting edge publicly available within robot operating system (ROS) monocular simultaneous localization and mapping methods: DSO, LDSO, ORB-SLAM2, and DynaSLAM. The analysis considers pose estimation accuracy (alignment, absolute trajectory, and relative pose root mean square error) and trajectory precision of the four methods at TUM-Mono and EuRoC datasets. |
|
dc.relation.ispartofseries |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
|
dc.subject |
Benchmark testing |
|
dc.subject |
Monocular SLAM |
|
dc.subject |
Path planning |
|
dc.subject |
Robot sensing systems |
|
dc.subject |
Simultaneous localization and mapping |
|
dc.subject |
State estimation |
|
dc.subject |
Visual odometry |
|
dc.subject |
Visual SLAM |
|
dc.title |
Comparison of ROS-Based Monocular Visual SLAM Methods: DSO, LDSO, ORB-SLAM2 and DynaSLAM |
|
dc.type |
Conference Paper |
|
dc.relation.ispartofseries-volume |
12336 LNAI |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
222 |
|
dc.source.id |
SCOPUS03029743-2020-12336-SID85092904826 |
|