Электронный архив

Implementation of machine learning and data mining to improve cybersecurity and limit vulnerabilities to cyber attacks

Показать сокращенную информацию

dc.contributor.author Alloghani M.
dc.contributor.author Al-Jumeily D.
dc.contributor.author Hussain A.
dc.contributor.author Mustafina J.
dc.contributor.author Baker T.
dc.contributor.author Aljaaf A.J.
dc.date.accessioned 2021-02-25T06:47:18Z
dc.date.available 2021-02-25T06:47:18Z
dc.date.issued 2020
dc.identifier.issn 1860-949X
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/161019
dc.description.abstract © Springer Nature Switzerland AG 2020. Of the many challenges that continue to make detection of cyber-attack detection elusive, lack of training data remains the biggest one. Even though organizations and business turn to known network monitoring tools such as Wireshark, millions of people are still vulnerable because of lack of information pertaining to website behaviors and features that can amount to an attack. In fact, most of the attacks do not occur because of threat actors’ resort to complex coding and evasion techniques but because victims lack the basic tools to detect and avoid the attacks. Despite these challenges, machine learning is proving to revolutionize the understanding of the nature of cyber-attacks, and this study implemented machine learning techniques to Phishing Website data with the objective of comparing five algorithms and providing insight that the general public can use to avoid phishing pitfalls. The findings of the study suggest that Neural Network is the best performing algorithm and the model suggest that inclusion of an IP address in the domain name, longer URL, use of URL shortening services, inclusion of “@” symbol in the URL, inclusion of “−” symbol in the URL, use of non-trusted SSL certificates with expiry duration less than 6 months, domains registered for less than one year, and favicon redirecting from other URLs as the leading features of phishing websites. Neural Network is based on multi-layer perceptron and is the basis of intelligence so that in future, phishing detection will be automated and rendered an artificial intelligence task.
dc.relation.ispartofseries Studies in Computational Intelligence
dc.subject Cybersecurity
dc.subject Data mining
dc.subject Machine learning
dc.subject Phishing websites
dc.title Implementation of machine learning and data mining to improve cybersecurity and limit vulnerabilities to cyber attacks
dc.type Chapter
dc.relation.ispartofseries-volume 855
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 47
dc.source.id SCOPUS1860949X-2020-855-SID85072073611


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика